全局锁、表级锁和行锁
参考:
数据库锁设计的初衷是处理并发问题。作为多用户共享的资源,当出现并发访问的时候,数据库需要合理地控制资源的访问规则。而锁就是用来实现这些访问规则的重要数据结构。
根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。由于锁的设计比较复杂,这里不会涉及锁的具体实现细节,主要介绍的是碰到锁时的现象和其背后的原理。
# 1. 全局锁
# 1.1 什么是全局锁
全局锁就是对整个数据库实例加锁。MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。
全局锁的典型使用场景是,做全库逻辑备份。也就是把整库每个表都 select 出来存成文本。
以前有一种做法,是通过 FTWRL 确保不会有其他线程对数据库做更新,然后对整个库做备份。注意,在备份过程中整个库完全处于只读状态。但是让整库都只读,听上去就很危险:
- 如果你在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆;
- 如果你在从库上备份,那么备份期间从库不能执行主库同步过来的 binlog,会导致主从延迟。
# 1.2 备份为什么要加锁?
看来加全局锁不太好。但是细想一下,备份为什么要加锁呢❓ 我们来看一下不加锁会有什么问题。
现在发起一个逻辑备份。假设备份期间,有一个用户,他购买了一门课程,业务逻辑里就要扣掉他的余额,然后往已购课程里面加上一门课。如果时间顺序上是先备份账户余额表 (u_account),然后用户购买,然后备份用户课程表 (u_course),会怎么样呢?你可以看一下这个图:
可以看到,这个备份结果里,用户 A 的数据状态是“账户余额没扣,但是用户课程表里面已经多了一门课”。如果后面用这个备份来恢复数据的话,用户 A 就发现,自己赚了。如果备份表的顺序反过来,先备份用户课程表再备份账户余额表,那用户就亏了。
也就是说,不加锁的话,备份系统备份的得到的库不是一个逻辑时间点,这个视图是逻辑不一致的。
# 1.3 全局加锁的方法
# 1.3.1 开启事务(single-transaction 方法)
说到视图你肯定想起来了,我们在前面讲事务隔离的时候,其实是有一个方法能够拿到一致性视图的,对吧?是的,就是在可重复读隔离级别下开启一个事务。
官方自带的逻辑备份工具是 mysqldump。当 mysqldump 使用参数 -single-transaction
的时候,导数据之前就会启动一个事务,来确保拿到一致性视图。而由于 MVCC 的支持,这个过程中数据是可以正常更新的。
你一定在疑惑,有了这个功能,为什么还需要 FTWRL 呢?一致性读是好,但前提是引擎要支持这个隔离级别。比如,对于 MyISAM 这种不支持事务的引擎,如果备份过程中有更新,总是只能取到最新的数据,那么就破坏了备份的一致性。这时,我们就需要使用 FTWRL 命令了。
所以,single-transaction 方法只适用于所有的表使用事务引擎的库。如果有的表使用了不支持事务的引擎,那么备份就只能通过 FTWRL 方法。这往往是 DBA 要求业务开发人员使用 InnoDB 替代 MyISAM 的原因之一。
# 1.3.2 set global readonly=true 方式 vs FTWRL 方式
你也许会问,既然要全库只读,为什么不使用 set global readonly=true 的方式呢?确实 readonly 方式也可以让全库进入只读状态,但我还是会建议你用 FTWRL 方式,主要有两个原因:
- 一是,在有些系统中,readonly 的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改 global 变量的方式影响面更大,我不建议你使用。
- 二是,在异常处理机制上有差异。如果执行 FTWRL 命令之后由于客户端发生异常断开,那么 MySQL 会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为 readonly 之后,如果客户端发生异常,则数据库就会一直保持 readonly 状态,这样会导致整个库长时间处于不可写状态,风险较高。
业务的更新不只是增删改数据(DML),还有可能是加字段等修改表结构的操作(DDL)。不论是哪种方法,一个库被全局锁上以后,你要对里面任何一个表做加字段操作,都是会被锁住的。
但是,即使没有被全局锁住,加字段也不是就能一帆风顺的,因为你还会碰到接下来我们要介绍的表级锁。
# 1.4 小结
全局锁主要用在逻辑备份过程中。对于全部是 InnoDB 引擎的库,我建议你选择使用–single-transaction 参数,对应用会更友好。
# 2. 表级锁
MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。
# 2.1 lock tables
表锁的语法是 lock tables … read/write。与 FTWRL 类似,可以用 unlock tables 主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables 语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。
举个例子, 如果在某个线程 A 中执行 lock tables t1 read, t2 write; 这个语句,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能访问其他表。
在还没有出现更细粒度的锁的时候,表锁是最常用的处理并发的方式。而对于 InnoDB 这种支持行锁的引擎,一般不使用 lock tables 命令来控制并发,毕竟锁住整个表的影响面还是太大。
# 2.2 MDL
另一类表级的锁是 MDL(metadata lock)。MDL 不需要显式使用,在访问一个表的时候会被自动加上。MDL 的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。
因此,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL 读锁;当要对表做结构变更操作的时候,加 MDL 写锁。
- 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
- 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。
因此说,MDL 的作用是防止 DDL 和 DML 并发的冲突。
虽然 MDL 锁是系统默认会加的,但却是你不能忽略的一个机制。比如下面这个例子,我经常看到有人掉到这个坑里:给一个小表加个字段,导致整个库挂了。
你肯定知道,给一个表加字段,或者修改字段,或者加索引,需要扫描全表的数据。在对大表操作的时候,你肯定会特别小心,以免对线上服务造成影响。而实际上,即使是小表,操作不慎也会出问题。我们来看一下下面的操作序列,假设表 t 是一个小表:
- 我们可以看到 session A 先启动,这时候会对表 t 加一个 MDL 读锁。由于 session B 需要的也是 MDL 读锁,因此可以正常执行。
- 之后 session C 会被 blocked,是因为 session A 的 MDL 读锁还没有释放,而 session C 需要 MDL 写锁,因此只能被阻塞。
- 如果只有 session C 自己被阻塞还没什么关系,但是之后所有要在表 t 上新申请 MDL 读锁的请求也会被 session C 阻塞。前面我们说了,所有对表的增删改查操作都需要先申请 MDL 读锁,就都被锁住,等于这个表现在完全不可读写了(因为 session A 和 session B 可能是长事务)。如果某个表上的查询语句频繁,而且客户端有重试机制,也就是说超时后会再起一个新 session 再请求的话,这个库的线程很快就会爆满。
session C 拿不到 MDL 写锁而被 block,之后 session D 也会被 block 而不是先执行,这样的设计初衷也许是防止 session C 饿死。
你现在应该知道了,事务中的 MDL 锁,在语句执行开始时申请,但是语句结束后并不会马上释放,而会等到整个事务提交后再释放。基于上面的分析,我们来讨论一个问题,如何安全地给小表加字段❓
首先我们要解决长事务,事务不提交,就会一直占着 MDL 锁。在 MySQL 的 information_schema 库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做 DDL 变更的表刚好有长事务在执行,要考虑先暂停 DDL,或者 kill 掉这个长事务。
但考虑一下这个场景。如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?
这时候 kill 可能未必管用,因为新的请求马上就来了。比较理想的机制是,在 alter table 语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到 MDL 写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者 DBA 再通过重试命令重复这个过程。
MariaDB 已经合并了 AliSQL 的这个功能,所以这两个开源分支目前都支持 DDL NOWAIT/WAIT n 这个语法。
ALTER TABLE tbl_name NOWAIT add column ...
ALTER TABLE tbl_name WAIT N add column ...
2
# 2.3 小结
表锁一般是在数据库引擎不支持行锁的时候才会被用到的。如果你发现你的应用程序里有 lock tables 这样的语句,你需要追查一下,比较可能的情况是:
- 要么是你的系统现在还在用 MyISAM 这类不支持事务的引擎,那要安排升级换引擎;
- 要么是你的引擎升级了,但是代码还没升级。我见过这样的情况,最后业务开发就是把 lock tables 和 unlock tables 改成 begin 和 commit,问题就解决了。
# 3. 行锁
MySQL 的行锁是在引擎层由各个引擎自己实现的。但并不是所有的引擎都支持行锁,比如 MyISAM 引擎就不支持行锁。不支持行锁意味着并发控制只能使用表锁,对于这种引擎的表,同一张表上任何时刻只能有一个更新在执行,这就会影响到业务并发度。InnoDB 是支持行锁的,这也是 MyISAM 被 InnoDB 替代的重要原因之一。这里主要聊聊 InnoDB 的行锁,以及如何通过减少锁冲突来提升业务并发度。
行锁就是针对数据表中行记录的锁。这很好理解,比如事务 A 更新了一行,而这时候事务 B 也要更新同一行,则必须等事务 A 的操作完成后才能进行更新。
当然,数据库中还有一些没那么一目了然的概念和设计,这些概念如果理解和使用不当,容易导致程序出现非预期行为,比如两阶段锁。
# 3.1 从两阶段锁说起
我先给你举个例子。在下面的操作序列中,事务 B 的 update 语句执行时会是什么现象呢?假设字段 id 是表 t 的主键。
这个问题的结论取决于事务 A 在执行完两条 update 语句后,持有哪些锁,以及在什么时候释放。你可以验证一下:实际上事务 B 的 update 语句会被阻塞,直到事务 A 执行 commit 之后,事务 B 才能继续执行。
知道了这个答案,你一定知道了事务 A 持有的两个记录的行锁,都是在 commit 的时候才释放的。也就是说,在 InnoDB 事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。
知道了这个设定,对我们使用事务有什么帮助呢?那就是,如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。我给你举个例子。
假设你负责实现一个电影票在线交易业务,顾客 A 要在影院 B 购买电影票。我们简化一点,这个业务需要涉及到以下操作:
- 从顾客 A 账户余额中扣除电影票价;
- 给影院 B 的账户余额增加这张电影票价;
- 记录一条交易日志。
也就是说,要完成这个交易,我们需要 update 两条记录,并 insert 一条记录。当然,为了保证交易的原子性,我们要把这三个操作放在一个事务中。那么,你会怎样安排这三个语句在事务中的顺序呢?
试想如果同时有另外一个顾客 C 要在影院 B 买票,那么这两个事务冲突的部分就是语句 2 了。因为它们要更新同一个影院账户的余额,需要修改同一行数据。
根据两阶段锁协议,不论你怎样安排语句顺序,所有的操作需要的行锁都是在事务提交的时候才释放的。所以,如果你把语句 2 安排在最后,比如按照 3、1、2 这样的顺序,那么影院账户余额这一行的锁时间就最少。这就最大程度地减少了事务之间的锁等待,提升了并发度。
好了,现在由于你的正确设计,影院余额这一行的行锁在一个事务中不会停留很长时间。但是,这并没有完全解决你的困扰。如果这个影院做活动,可以低价预售一年内所有的电影票,而且这个活动只做一天。于是在活动时间开始的时候,你的 MySQL 就挂了。你登上服务器一看,CPU 消耗接近 100%,但整个数据库每秒就执行不到 100 个事务。这是什么原因呢?
这里,就要说到死锁和死锁检测了。
# 3.2 死锁和死锁检测
当并发系统中不同线程出现循环资源依赖,涉及的线程都在等待别的线程释放资源时,就会导致这几个线程都进入无限等待的状态,称为死锁。这里我用数据库中的行锁举个例子:
这时候,事务 A 在等待事务 B 释放 id=2 的行锁,而事务 B 在等待事务 A 释放 id=1 的行锁。 事务 A 和事务 B 在互相等待对方的资源释放,就是进入了死锁状态。当出现死锁以后,有两种策略:
- 一种策略是,直接进入等待,直到超时。这个超时时间可以通过参数 innodb_lock_wait_timeout 来设置。
- 另一种策略是,发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数 innodb_deadlock_detect 设置为 on,表示开启这个逻辑。
在 InnoDB 中,innodb_lock_wait_timeout 的默认值是 50s,意味着如果采用第一个策略,当出现死锁以后,第一个被锁住的线程要过 50s 才会超时退出,然后其他线程才有可能继续执行。对于在线服务来说,这个等待时间往往是无法接受的。
但是,我们又不可能直接把这个时间设置成一个很小的值,比如 1s。这样当出现死锁的时候,确实很快就可以解开,但如果不是死锁,而是简单的锁等待呢?所以,超时时间设置太短的话,会出现很多误伤。
所以,正常情况下我们还是要采用第二种策略,即:主动死锁检测,而且 innodb_deadlock_detect 的默认值本身就是 on。主动死锁检测在发生死锁的时候,是能够快速发现并进行处理的,但是它也是有额外负担的。
你可以想象一下这个过程:每当一个事务被锁的时候,就要看看它所依赖的线程有没有被别人锁住,如此循环,最后判断是否出现了循环等待,也就是死锁。那如果是我们上面说到的所有事务都要更新同一行的场景呢?每个新来的被堵住的线程,都要判断会不会由于自己的加入导致了死锁,这是一个时间复杂度是 $O(n^2)$ 的操作。假设有 1000 个并发线程要同时更新同一行,那么死锁检测操作就是 100 万这个量级的。虽然最终检测的结果是没有死锁,但是这期间要消耗大量的 CPU 资源。因此,你就会看到 CPU 利用率很高,但是每秒却执行不了几个事务。
根据上面的分析,我们来讨论一下,怎么解决由这种热点行更新导致的性能问题呢❓ 问题的症结在于,死锁检测要耗费大量的 CPU 资源:
一种头痛医头的方法,就是如果你能确保这个业务一定不会出现死锁,可以临时把死锁检测关掉。但是这种操作本身带有一定的风险,因为业务设计的时候一般不会把死锁当做一个严重错误,毕竟出现死锁了,就回滚,然后通过业务重试一般就没问题了,这是业务无损的。而关掉死锁检测意味着可能会出现大量的超时,这是业务有损的。
另一个思路是控制并发度。根据上面的分析,你会发现如果并发能够控制住,比如同一行同时最多只有 10 个线程在更新,那么死锁检测的成本很低,就不会出现这个问题。一个直接的想法就是,在客户端做并发控制。但是,你会很快发现这个方法不太可行,因为客户端很多。我见过一个应用,有 600 个客户端,这样即使每个客户端控制到只有 5 个并发线程,汇总到数据库服务端以后,峰值并发数也可能要达到 3000。
因此,这个并发控制要做在数据库服务端。如果你有中间件,可以考虑在中间件实现;如果你的团队有能修改 MySQL 源码的人,也可以做在 MySQL 里面。基本思路就是,对于相同行的更新,在进入引擎之前排队。这样在 InnoDB 内部就不会有大量的死锁检测工作了。
可能你会问,如果团队里暂时没有数据库方面的专家,不能实现这样的方案,能不能从设计上优化这个问题呢 ❓
- 你可以考虑通过将一行改成逻辑上的多行来减少锁冲突。还是以影院账户为例,可以考虑放在多条记录上,比如 10 个记录,影院的账户总额等于这 10 个记录的值的总和。这样每次要给影院账户加金额的时候,随机选其中一条记录来加。这样每次冲突概率变成原来的 1/10,可以减少锁等待个数,也就减少了死锁检测的 CPU 消耗。
这个方案看上去是无损的,但其实这类方案需要根据业务逻辑做详细设计。如果账户余额可能会减少,比如退票逻辑,那么这时候就需要考虑当一部分行记录变成 0 的时候,代码要有特殊处理。
# 3.3 小结
这一大节介绍了 MySQL 的行锁,并主要涉及了两阶段锁协议、死锁和死锁检测这两大部分内容。
- 以两阶段协议为起点,一起讨论了在开发的时候如何安排正确的事务语句。这里的原则 / 我给你的建议是:如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁的申请时机尽量往后放。
- 但是,调整语句顺序并不能完全避免死锁。所以我们引入了死锁和死锁检测的概念,以及提供了三个方案,来减少死锁对数据库的影响。减少死锁的主要方向,就是控制访问相同资源的并发事务量。
# QA
Q:如果你要删除一个表里面的前 10000 行数据,有以下三种方法可以做到:
- 第一种,直接执行 delete from T limit 10000;
- 第二种,在一个连接中循环执行 20 次 delete from T limit 500;
- 第三种,在 20 个连接中同时执行 delete from T limit 500。
你会选择哪一种方法呢?为什么呢?
A:第二种方式是相对较好的。
- 第一种方式(即:直接执行 delete from T limit 10000)里面,单个语句占用时间长,锁的时间也比较长;而且大事务还会导致主从延迟。
- 第三种方式(即:在 20 个连接中同时执行 delete from T limit 500),会人为造成锁冲突。